\(\int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [52]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 79 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {A \text {arctanh}(\sin (c+d x))}{a^2 d}-\frac {(4 A-B) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

A*arctanh(sin(d*x+c))/a^2/d-1/3*(4*A-B)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))-1/3*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c)
)^2

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {3057, 12, 3855} \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {A \text {arctanh}(\sin (c+d x))}{a^2 d}-\frac {(4 A-B) \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac {(A-B) \sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + a*Cos[c + d*x])^2,x]

[Out]

(A*ArcTanh[Sin[c + d*x]])/(a^2*d) - ((4*A - B)*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A - B)*Sin[c + d
*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {(3 a A-a (A-B) \cos (c+d x)) \sec (c+d x)}{a+a \cos (c+d x)} \, dx}{3 a^2} \\ & = -\frac {(4 A-B) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int 3 a^2 A \sec (c+d x) \, dx}{3 a^4} \\ & = -\frac {(4 A-B) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {A \int \sec (c+d x) \, dx}{a^2} \\ & = \frac {A \text {arctanh}(\sin (c+d x))}{a^2 d}-\frac {(4 A-B) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(170\) vs. \(2(79)=158\).

Time = 0.66 (sec) , antiderivative size = 170, normalized size of antiderivative = 2.15 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (6 A \cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+(A-B) \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+2 (4 A-B) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+(A-B) \cos \left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {c}{2}\right )\right )}{3 a^2 d (1+\cos (c+d x))^2} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + a*Cos[c + d*x])^2,x]

[Out]

(-2*Cos[(c + d*x)/2]*(6*A*Cos[(c + d*x)/2]^3*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2]
+ Sin[(c + d*x)/2]]) + (A - B)*Sec[c/2]*Sin[(d*x)/2] + 2*(4*A - B)*Cos[(c + d*x)/2]^2*Sec[c/2]*Sin[(d*x)/2] +
(A - B)*Cos[(c + d*x)/2]*Tan[c/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

Maple [A] (verified)

Time = 1.24 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.95

method result size
parallelrisch \(\frac {-6 A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+6 A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (A -B \right )+9 A -3 B \right )}{6 a^{2} d}\) \(75\)
derivativedivides \(\frac {-\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}+\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{3}-3 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-2 A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+2 A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d \,a^{2}}\) \(91\)
default \(\frac {-\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}+\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{3}-3 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-2 A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+2 A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d \,a^{2}}\) \(91\)
risch \(-\frac {2 i \left (3 A \,{\mathrm e}^{2 i \left (d x +c \right )}+9 A \,{\mathrm e}^{i \left (d x +c \right )}-3 B \,{\mathrm e}^{i \left (d x +c \right )}+4 A -B \right )}{3 d \,a^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{3}}+\frac {A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a^{2} d}-\frac {A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{2} d}\) \(110\)
norman \(\frac {-\frac {\left (A -B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a d}-\frac {\left (3 A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a d}-\frac {\left (5 A -2 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 a d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a}+\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{2} d}-\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2} d}\) \(137\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+cos(d*x+c)*a)^2,x,method=_RETURNVERBOSE)

[Out]

1/6*(-6*A*ln(tan(1/2*d*x+1/2*c)-1)+6*A*ln(tan(1/2*d*x+1/2*c)+1)-tan(1/2*d*x+1/2*c)*(tan(1/2*d*x+1/2*c)^2*(A-B)
+9*A-3*B))/a^2/d

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.66 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {3 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left ({\left (4 \, A - B\right )} \cos \left (d x + c\right ) + 5 \, A - 2 \, B\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*(3*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*log(sin(d*x + c) + 1) - 3*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c
) + A)*log(-sin(d*x + c) + 1) - 2*((4*A - B)*cos(d*x + c) + 5*A - 2*B)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2
*a^2*d*cos(d*x + c) + a^2*d)

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {A \sec {\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))**2,x)

[Out]

(Integral(A*sec(c + d*x)/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1), x) + Integral(B*cos(c + d*x)*sec(c + d*x)/(co
s(c + d*x)**2 + 2*cos(c + d*x) + 1), x))/a**2

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.84 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {A {\left (\frac {\frac {9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {6 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac {6 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}}\right )} - \frac {B {\left (\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2}}}{6 \, d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*(A*((9*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 6*log(sin(d*x + c)/(c
os(d*x + c) + 1) + 1)/a^2 + 6*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a^2) - B*(3*sin(d*x + c)/(cos(d*x + c)
+ 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.43 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\frac {6 \, A \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {6 \, A \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} - \frac {A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(6*A*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - 6*A*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 - (A*a^4*tan(1/2*
d*x + 1/2*c)^3 - B*a^4*tan(1/2*d*x + 1/2*c)^3 + 9*A*a^4*tan(1/2*d*x + 1/2*c) - 3*B*a^4*tan(1/2*d*x + 1/2*c))/a
^6)/d

Mupad [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.94 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {2\,A\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^2\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (A-B\right )}{6\,a^2\,d}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {A}{a^2}+\frac {A-B}{2\,a^2}\right )}{d} \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + a*cos(c + d*x))^2),x)

[Out]

(2*A*atanh(tan(c/2 + (d*x)/2)))/(a^2*d) - (tan(c/2 + (d*x)/2)^3*(A - B))/(6*a^2*d) - (tan(c/2 + (d*x)/2)*(A/a^
2 + (A - B)/(2*a^2)))/d